翻訳と辞書 |
Unisolvent point set : ウィキペディア英語版 | Unisolvent point set
In approximation theory, a finite collection of points is often called unisolvent for a space if any element is uniquely determined by its values on .
is unisolvent for (polynomials in n variables of degree at most m) if there exists a unique polynomial in of lowest possible degree which interpolates the data . Simple examples in would be the fact that two distinct points determine a line, three points determine a parabola, etc. It is clear that over , any collection of ''k'' + 1 distinct points will uniquely determine a polynomial of lowest possible degree in . ==See also==
*Padua points
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Unisolvent point set」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|